Computer-friendly d-tensor identities for $\operatorname{SU}(\mathrm{n})$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 23 L705
(http://iopscience.iop.org/0305-4470/23/15/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 08:40

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Computer-friendly \boldsymbol{d}-tensor identities for $\mathbf{S U}(\boldsymbol{n})$

A Sudbery \dagger
Department of Mathematics, University of York, Heslington, York YO1 5DD, UK

Received 14 May 1990

Abstract

The identity of degree $n-1$ satisfied by the $\operatorname{SU}(n)$ tensor $d_{i j k}$ is derived and presented in a simple recursive form, suitable for computation.

The algebra of $\operatorname{SU}(n)$ tensors has recently become of interest in the study of conformal field theories, following the construction by Bais, Bouwknegt, Schoutens and Surridge [1] of bosonic extensions of the Virasoro algebra using higher-order Casimir invariants of Lie algebras. For the A_{n} series these invariants can be formed by means of the tensor $d_{i j k}$, which satisfies a number of identities. Some of these take the same form for all n, but there is one identity whose form depends on n. A general formulation of this identity has been given by Rashid and Saifuddin [2], but this involves a sum over partitions of n and it is laborious to use it to obtain the specific form of the identity for any particular value of n. The purpose of this letter is to present an independent derivation of this identity, leading to a form involving tensors defined by simple recursive formulae, which is suitable for use in computation, whether by hand or by machine.

We use the same notation and conventions as in [3]. Indices i, j, k run from 1 to $N=n^{2}-1$, labelling coordinates in the adjoint representation of $\operatorname{su}(n)\left(=A_{n-1}\right)$. The tensors $f_{i j k}$ and $d_{i j k}$, totally antisymmetric and symmetric respectively, are defined by the multiplication rules for a basis set V_{i} of $n \times n$ Hermitian matrices:

$$
\begin{equation*}
V_{i} V_{j}=\frac{2}{n} \delta_{i j}+\left(d_{i j k}+\mathrm{i} f_{i j k}\right) V_{k} \tag{1}
\end{equation*}
$$

They satisfy the following identities [3] for all n :

$$
\begin{align*}
& f_{i m n} f_{n j k}+f_{j m n} f_{i n k}+f_{k m n} f_{i j n}=0 \tag{2}\\
& f_{i m n} d_{n j k}+f_{j m n} d_{i n k}+f_{k m n} d_{i j n}=0 \tag{3}\\
& f_{i j k} f_{m n k}=\frac{2}{n}\left(\delta_{i m} \delta_{j n}-\delta_{i n} \delta_{j m}\right)+\left(d_{i m k} d_{j n k}-d_{i n k} d_{j m k}\right) \tag{4}\\
& f_{i m n} f_{j m n}=n \delta_{i j} \tag{5}\\
& d_{i m n} d_{j m n}=\left(\frac{n^{2}-4}{n}\right) \delta_{i j} . \tag{6}
\end{align*}
$$

The further identity which is the subject of this letter is a consequence of the Cayley-Hamilton theorem. This identity, whose form is specific to the value of n, is
a tensor equation of rank $n+1$ involving $\delta_{i j}$ and $d_{i j k}$ only. It is best discussed in terms of the r th-rank tensors $d_{i_{1} \ldots i_{r}}^{(r)}(r \geqslant 2)$ formed from repeated products of $d_{i j k}$:

$$
\begin{equation*}
d_{i_{1} \ldots i_{r+1}}^{(r+1)}=d_{i_{i}, \ldots, i_{r-1} j}^{(r)} d_{j i, i_{r+1}} \quad \text { with } \quad d_{i j}^{(2)}=\delta_{i j} \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
d_{i_{1} \ldots i_{r}}^{(r)}=\left(D_{i_{2}} \ldots D_{i_{r-1}}\right)_{i_{1} i_{r}} \tag{8}
\end{equation*}
$$

where D_{i} is the $N \times N$ matrix whose (j, k) th element is $d_{i j k}$.
It is convenient to make the set of matrices V_{i} into a complete set of $n \times n$ matrices by annexing the unit matrix: $V_{0}=\sqrt{(2 / n)} 1$. In analogy with the established convention for Minkowski space, we will use Latin indices to run from 1 to N and Greek ones to run from 0 to N. We now have

$$
\begin{equation*}
\operatorname{Tr}\left(V_{\mu} V_{\nu}\right)=2 \delta_{\mu \nu} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{\mu} V_{\nu}=e_{\mu \nu \lambda} V_{\lambda}+\mathrm{i} f_{\mu \nu \lambda} V_{\lambda} \tag{10}
\end{equation*}
$$

where $e_{0 \mu \nu}=\sqrt{(2 / n)} \delta_{\mu \nu}, e_{i j k}=d_{i j k}$ and $f_{0 \mu \nu}=0$. (Note that we do not spoil the covariance of a tensor by putting one or more of its indices equal to 0 ; this is because the space of the V_{μ} is reducible under the $\mathrm{SU}(n)$ transformations $V \rightarrow U V U^{-1}$.)

As before, we define the r th-rank tensors $e_{\mu_{1} \ldots \mu_{r}}^{(r)}$ by

$$
\begin{equation*}
e_{\mu_{1} \ldots \mu_{r+1}}^{(r+1)}=e_{\mu_{1} \ldots \mu_{r-1}}^{(r)}, e_{\nu \mu_{r}, \mu_{r+1}} . \tag{11}
\end{equation*}
$$

This series starts with a tensor of rank one: $e_{\mu}^{(1)}=\sqrt{(2 / n)} \delta_{\mu 0}$. When one of its indices is $0, e^{(r+1)}$ reduces to $e^{(r)}$:

$$
\begin{equation*}
e_{\mu_{1} \ldots 0 . . . \mu_{r}}^{(r+1)}=\sqrt{\frac{2}{n}} e_{\mu_{1} \ldots \mu,}^{(r)} \tag{12}
\end{equation*}
$$

and when none of its indices is 0 , an e-tensor can be expressed in terms of d-tensors by a recursion formula:

$$
\begin{equation*}
e_{i_{1}, \ldots i_{r}}^{(r)}=\frac{2}{n} \sum_{s=0}^{r-2} e_{i_{1} \ldots, i,}^{(s)} d_{i_{i+1}, \ldots i_{r}}^{(r-s)} \tag{13}
\end{equation*}
$$

interpreting $e^{(0)}=n / 2$.
The usefulness of e-tensors lies in the following expression for a power of the matrix $A=a_{\mu} V_{\mu}$:

$$
\begin{equation*}
\left(a_{\mu} V_{\mu}\right)^{r}=e_{\mu_{1} \ldots \mu_{\nu}}^{(r+1)} a_{\mu_{1}} \ldots a_{\mu,} V_{\nu} . \tag{14}
\end{equation*}
$$

Let us write the characteristic polynomial of a matrix A as

$$
\begin{equation*}
P_{A}(x)=x^{n}-\Delta_{1}(A) x^{n-1}+\Delta_{2}(A) x^{n-2}-\ldots+(-)^{n} \Delta_{n}(A) . \tag{15}
\end{equation*}
$$

The coefficients $\Delta_{r}(A)$ are the invariants of the matrix $A . \Delta_{r}(A)$ is the sum of all products of r different eigenvalues of A (an m-fold degenerate eigenvalue counts as m different eigenvalues for our purposes). The invariants of A can be expressed in terms of traces of powers of A, independently of the dimension n, by Newton's formula

$$
\begin{equation*}
\Delta_{r}(A)=\frac{1}{r} \sum_{s=0}^{r-1}(-)^{r-s+1} \Delta_{s}(A) \operatorname{Tr}\left(A^{r-s}\right) \tag{16}
\end{equation*}
$$

with $\Delta_{0}(A)=1$.

If we write $A=a_{\mu} V_{\mu}$, it is clear that $\Delta_{r}(A)$ is a homogeneous polynomial of degree r in a_{μ} :

$$
\begin{equation*}
\Delta_{r}(A)=\Delta_{\mu_{1} \ldots \mu_{r}}^{(r)} a_{\mu_{1}} \ldots a_{\mu_{r}} \tag{17}
\end{equation*}
$$

Also, from (12) and (14), we have

$$
\begin{equation*}
\operatorname{Tr}\left(A^{r}\right)=2 e_{\mu_{1} \ldots \mu_{r}}^{(r)} a_{\mu_{1}} \ldots a_{\mu_{r}} \tag{18}
\end{equation*}
$$

Thus the tensors $\Delta^{(r)}$ can be defined recursively by

$$
\begin{equation*}
r!\Delta_{\mu_{1} \ldots \mu_{r}}^{(r)}=\frac{2}{r} S \sum_{\mu_{1} \ldots \mu_{r}} \sum_{s=0}^{r-1}(-)^{r-s+1} \Delta_{\mu_{1} \ldots \mu_{s}}^{(s)} e_{\mu_{s+1} \ldots \mu_{r}}^{(r-s)} \tag{19}
\end{equation*}
$$

where the symbol S denotes complete symmetrisation of the indices over which it stands.
Now the Cayley-Hamilton theorem states that

$$
\begin{equation*}
P_{A}(A)=A^{n}-\Delta_{1}(A) A^{n-1}+\Delta_{2}(A) A^{n-2}-\ldots+(-)^{n} \Delta_{n}(A)=0 \tag{20}
\end{equation*}
$$

Putting $A=a_{\mu} V_{\mu}$ and using (14) for the powers of A, we obtain

$$
\begin{equation*}
\sum_{s=0}^{n}(-)^{s} \Delta_{\mu_{1} \ldots \mu_{s}}^{(s)} e_{\mu_{s+1} \ldots \mu_{n} \nu}^{(n-s+1)} a_{\mu_{1}} \ldots a_{\mu_{n}}=0 \tag{21}
\end{equation*}
$$

by virtue of the linear independence of the V_{μ}. Since this equation is true for arbitrary a_{μ}, we deduce that

$$
\begin{equation*}
\underset{\mu_{1} \ldots \mu_{1}}{\mathbf{S}} \sum_{s=0}^{n}(-)^{s} \Delta_{\mu_{1 \ldots}, \ldots \mu_{s}}^{(s)} e_{\mu_{s}+1 \ldots \mu_{n} \nu}^{(n-s+1)}=0 \tag{22}
\end{equation*}
$$

This contains no new information if one of the indices is 0 . If $\nu=0$, it merely restates the definition of $\Delta^{(n)}$; if one of the μ_{i} is 0 , it follows from the formula

$$
\begin{equation*}
\Delta_{\mu_{1} \ldots \mu_{s} 0 \ldots 0}^{(r)}=\left(\frac{n}{2}\right)^{-\frac{1}{2}(r-s)} \frac{(n-s)!s!}{(n-r)!r!} \Delta_{\mu_{1} \ldots \mu_{s}}^{(s)} \tag{23}
\end{equation*}
$$

This results solely from the manner of construction of $\Delta^{(r)}$, irrespective of the nature of $d_{i j k}$, for it can be proved from (19) and (21) if one has the inductive stamina. More easily, it can be seen to be equivalent to

$$
\begin{equation*}
\Delta_{r}(A+\alpha 1)=\sum_{s=0}^{r}\binom{n-s}{r-s} \Delta_{s}(A) \alpha^{r-s} \tag{24}
\end{equation*}
$$

which is a direct consequence of the interpretation of $\Delta_{r}(A)$ in terms of eigenvalues.
Thus the identity at which we have been aiming is

$$
\begin{equation*}
\underset{i_{1} \ldots i_{n}}{\mathbf{S}} \sum_{s=0}^{n}(-)^{s} \Delta_{i_{1} \ldots i_{s}}^{(s)} \boldsymbol{e}_{\left.i_{s+1} \ldots \ldots i_{n}\right)}^{(n-s+1)}=0 \tag{25}
\end{equation*}
$$

where the tensors $e^{(r)}$ and $\Delta^{(r)}$ are defined recursively by (13) and (19). The main feature of this identity is that it expresses the tensor $d^{(n+1)}$, symmetrised with respect to all but the last of its indices, as a sum of uncontracted products of d-tensors of lower rank. To illustrate this, here are the forms taken by (2.19) for a few low values
of n :

$$
\begin{align*}
& n=2: \quad d_{i j k}=0 \tag{26}\\
& n=3: \quad d_{\underline{i j k} \mid}^{(4)}=\frac{1}{3} \delta_{i j} \delta_{k l} \tag{27}\\
& n=4: \quad d^{(i j k l m}=\frac{1}{2} \delta_{i j} d_{k l m}+\frac{1}{6} d_{i j k} \delta_{l m} \tag{28}\\
& n=5: \quad d_{i j k l m}=\frac{3}{5} \overline{\delta_{i j} d_{k l m}(4)}+\frac{1}{10} d_{i \underline{i k l}}^{(4)} \delta_{m} n \tag{29}\\
& +\frac{4}{15} d_{i k} d_{l m n}-\frac{3}{50} \delta_{i j} \delta_{k l} \delta_{m n}
\end{align*}
$$

(underlined indices are to be totally symmetrised).
$S U(n)$ vector algebra. Ordinary three-dimensional vectors can be regarded as $\mathrm{SU}(2)$ tensors of rank one, i.e. elements of the Lie algebra A_{1}. Conventional vector algebra can be generalised to the algebra of $\operatorname{SU}(n)$ vectors. There is an antisymmetric vector product $\boldsymbol{a} \wedge \boldsymbol{b}$ deriving from the Lie bracket:

$$
\begin{equation*}
(\boldsymbol{a} \wedge \boldsymbol{b})_{i}=f_{i j k} a_{j} b_{k} \tag{30}
\end{equation*}
$$

There is also a symmetric vector product formed with $d_{i j k}$:

$$
\begin{equation*}
(\boldsymbol{a} * \boldsymbol{b})_{i}=d_{i j k} a_{j} b_{k} . \tag{31}
\end{equation*}
$$

Neither of these vector products is associative.
Equations (2)-(4) give rise to the following connections between the two vector products:

$$
\begin{align*}
& a \wedge(b \wedge c)+b \wedge(c \wedge a)+c \wedge(a \wedge b)=0 \tag{32}\\
& a \wedge(b * c)+b \wedge(c * a)+c \wedge(a * b)=0 \tag{33}\\
& a \wedge(b \wedge c)=\frac{2}{n}[(a \cdot c) b-(a \cdot b) c]+[(a * c) * b-(a * b) * c] . \tag{34}
\end{align*}
$$

Starting from a given vector a and forming repeated *-products, we generate in general an ($n-1$)-dimensional space H_{a} in which the \wedge-product is null. (This is an Abelian subalgebra of the Lie algebra of $\mathrm{SU}(n)$, and since this group has rank $n-1$, the dimension of H_{a} cannot exceed $n-1$.) An expression $a * a * \ldots * a$ is ambiguous, for its value depends on the order in which brackets are inserted into the product, but by using (4) any such product can be expressed as a combination of the following basis vectors for H_{a} :

$$
\begin{equation*}
a^{* r}=a *(a *(\ldots * a) \ldots) \quad(r \text { factors }) \tag{35}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\left(a^{* r}\right)_{i}=d_{i_{1} \ldots j_{r}}^{(r+1)} a_{j_{1}} \ldots a_{j_{r}} \tag{36}
\end{equation*}
$$

In general, $\boldsymbol{a}, \boldsymbol{a} * \boldsymbol{a}, \ldots, \boldsymbol{a}^{* n-1}$ are linearly independent; the identity (25) enables $\boldsymbol{a}^{* n}$ to be expressed in terms of them. The following relations exist:

$$
\begin{align*}
& a^{* r} \wedge a^{* s}=0 \tag{37}\\
& \boldsymbol{a} \cdot\left(\boldsymbol{a}^{* r-1} * \boldsymbol{a}^{* s}\right)=\boldsymbol{a}^{* r} \cdot \boldsymbol{a}^{* s}=a^{r+s} \tag{38}
\end{align*}
$$

where the invariants a^{p} are defined by

$$
\begin{equation*}
a^{p}=d_{i_{1} \ldots i_{p}}^{(p)} a_{i_{1}} \ldots a_{i_{p}} \tag{39}
\end{equation*}
$$

These $n-1$ independent invariants correspond to the Casimir operators of $\operatorname{SU}(n)$.
I am grateful to my supervisor, Dr Alan Macfarlane, for advice and encouragement, and to the Science Research Council for a grant.

References

[1] Bais FA, Bouwknegt P, Schoutens K and Surridge M 1988 Extensions of the Virasoro algebra constructed from Kac-Moody algebras using higher order Casimir invariants Nucl. Phys. B 304 348-70
[2] Rashid M A and Saifuddin 1973 Identity satisfied by the a-type coefficients of $\operatorname{SU}(n)$ J. Math. Phys. 14 630-1
[3] Macfarlane A J, Sudbery A and Weisz P H 1968 On Gell-Mann's λ-matrices, d - and f-tensors, octets, and parametrisations of $\operatorname{SU}(3)$ Commun. Math. Phys. 11 77-90

